

Introduction to **DOTS**

- 200+ Year Digital Preservation
- 20 TBytes per reel
- Immune from Malware & EMP
- Photonics Driven Recording
- Provides Data Provenance
- Data is Retrieved with a camera

DOTS What's New?

• 20 TeraBytes per 12" reel of 3/4" media

The Digital Preservation Problem

Current methods for archiving digital data on magnetic media create risk and uncertainty...

The Digital Preservation Problem

Yet...

Proposed Digital Preservation efforts, including DNA, LTO, glass, and others require increasingly complex methods for writing and reading data

Archivists will tell you, the ONLY successful methods to preserve information have *always* been visual & simple

Why **DOTS** is Revolutionary in its Simplicity

- WORM¹ Archival for well over 200 years²
- Ensures Data Provenance
- Data can be seen, and recorded in human readable form
- Data is retrieved with a camera
- Immune to magnetism, EMP, & can withstand environmental stress
- **DOTS** can be stored anywhere from -6° to 66° C (21° 150° F)
- 20 TBytes capacity per reel
- Hardware devices are backwardly compatible for all previous generations
- TCO superior to endless migration and paying for Cloud storage

DOTS What is it?

- **DOTS,** Digital Optical Technology System, is a non-magnetic method of representing data visually on a metal alloy
- A dot equals a binary 1, if there isn't a dot, it equals a binary zero
- Data is written with a laser at 1 Gbyte/second
- Data is read with a camera at equal or faster speeds.
- When read under polarized light, the metal alloy becomes dark with the written data contrasting sharply with the background

Low resolution example of data on 1/2" tape

DOTS What is it?

- DOTS is a phase change media composed of a patented metallic alloy sputtered on an archival polyester base (e.g.: Aramid, Mylar[™], Estar[™])
- Standard manufacturing techniques are used to create **DOTS** tape
- **DOTS** media and prototype recorder/readers were successfully built by early 2001
- Carnegie Mellon University tested **DOTS** and concluded an archival life of 200 to 2000 years
- Group 47 has dramatically improved and simplified the hardware design with an engineering upgrade/refresh, and strengthened the patent portfolio
- Group 47's new design was proven in a contract with the CIA
- Components for **DOTS** recorder/readers employ off-the-shelf imaging and laser technologies

The Product

- Because the data is represented visually, as long as people have access to cameras, the data will always be recoverable
- <u>Bit Plane Image preservation</u> format ensures image and sound file recovery for centuries
- A visual representation means all hardware will be backwardly compatible to the first generation
- New, efficient design eliminates "serpentine" recording techniques, ensuring record & read speeds in excess of 1 GByte/sec upon commercial availability
- Each unit of DOTS media will have factory-written, human-readable instructions for building a reader on the first few meters – Rosetta Leader

US Government Proof of Concept

- Group 47 successfully completed a contract awarded by the CIA to build a laboratory prototype proving the **DOTS** technology.
- Contract milestones included demonstration of writing and reading applications and document data in the DOTS visual format, and successfully writing and reading to DOTS metal alloy tape in the <u>Bit Plane Image preservation</u> format.

Performance Specifications

Data Transfer Speed

First Commercial Ship >1 GByte/sec

Media Characteristics

Gen 1 Capacity: 20TB Native	Tracks per pass: 15,000
Tape Speed: 20cm/sec	Passes to write entire tape: 1
File System Support: LTFS	Head to Tape Contact: None
Reel Dimensions: 12" Dia, ¾" Wide	Media Life: No less than 200 Years
NVM Capacity: Capacity TBD	Corrected bit error rate (CBER) of 10 ⁻¹⁸
WORM capable: Yes	EMP/Magnetic Field Sensitivity: None
Tape Thickness: TBD	Long Term Storage Temperature: 16-150°F (-9 – 66° C)
Data, Text and Images: Yes	Long Term Storage Humidity: 5%-85%

All generations of **DOTS** media will be backwardly compatible

Current Data Preservation Practices are *Not* Sustainable and Not Good For the Planet

- Whether it's Cloud, enterprise data center, hard drive, data tape, or solid state
- All current storage media end up in landfills and are *NOT* recycled
- Current practices create massive waste from forced migration, and sending countless hard drives and data tapes into landfills
- DOTS eliminates media & energy waste from forced migration, costly power requirements, and rigid environmental control demands

To be clear....

DOTS can store ANY digital file – including images and sound

DOTS can store the same things you would save to your hard drive

DOTS can store any application like Photoshop, Microsoft Word, Excel, or any of the documents these programs create

Competing Archival Options

Name	Strengths	Weaknesses	Stakeholders
DOTS	 Archival for over 200 years, 1 GB R/W speeds Non-magnetic, WORM, immune from EMP, UV, radiation, water, petrochemicals Data is non-complex, visual & read with a camera No environmental constraints Bit Plane Image format is future proof Proven in CIA Contract and 20 TB per reel 	 It isn't a product yet As with all digital storage, DOTS can be damaged by fire, acid, or a hammer 	Group 47
LTO Magnetic Tape	Open standardReadily Available	 Requires stringent environmental conditions Data loss due to age, magnetic fields, EMP Migration required every 3-5 years 	FujiFilm, HPE, IBM, Quantum
Piql (data on 35mm film emulsion)	 100 Year+ Archival Difficult to erase Visual method to store data 	 Requires stringent environmental conditions to store Requires film & film processing Over 200,000 feet of 35mm film to store 8TB (equal to a two Hour 4K Movie) 	EU, Norwegian Gov't
DNA	Extremely high density500 Year Minimum Lifetime	 Current read/write times impractical Very complex to recover data, vulnerable to radiation, mutations, and air travel above 20,000 feet 15+ years before commercial, prohibitive cost per TByte 	Harvard, Twist, Catalog, Microsoft*
5D/Project Silica Data in Glass	 Robust Glass Media Wide temperature storage Non-Magnetic, WORM storage 	 Requires powerful Femto lasers to read/write Microsoft intends to keep proprietary Slow Read/Write Speeds (2019 10 days to write 75 GB) It is glass 	University of Southampton, Microsoft, (Hitachi had a similar tech, but abandoned as impractical)
Folio	 Immune from magnetic fields & EMP Uses existing DVD White Book Standard 	 It isn't a product yet Uses frequency modulation for data storage Layers subject to delamination, dyes sensitive to UV Complex mechanism to recover data 	Folio Photonics
"The Cloud"	 Dispersion of assets No onsite storage constraints Access from any internet connection 	 No knowledge of where assets are At the mercy of bandwidth Actual location subject to local jurisdiction Same limitations as Hard Drives, vulnerable to EMP Very Expensive for archival 	Amazon, Microsoft, Google, HPE, IBM, and others

*It was announced at a Library of Congress meeting on March 2023 that Microsoft & Twist have ceased funding DNA research

Five NEW Patents Awarded to Group 47

(12) United States Patent Rosen	(10) Patent No.: US 9,208,813 B2 (45) Date of Patent: Dec. 8, 2015	
 (54) DIGITAL OPTICAL TAPE STORAGE SYSTEM (71) Applicant: Group 47, Inc., Woodland Hills, CA (US) 	USP (12) United States Patent Rosen	 (10) Patent No.: US 9,508,376 B2 (45) Date of Patent: Nov. 29, 2016
(72) Inventor: Daniel Scott Rosen , Thousand Oaks, CA (US)	See a (54) ARCHIVING IMAGERY ON DIGITAL OPTICAL TAPE	USPC
	 (71) Applicant: Group 47, Inc., Woodland Hills, CA (US) (72) Inventor: Daniel Scott Rosen, Thousand Oaks, CA (US) 	(56) References Cited U.S. PATENT DOCUMENTS
	(73) Assignee: Group 47, Inc., Woodland Hills, CA	4,661,941 A * 4/1987 Bell G11B 7/0031 347/248

- First new patent granted by U.S. Patent Office with multiple claims covering Group 47's unique visual approach for writing and reading digital data
- The second new patent granted covers Group 47's <u>Bit Plane Image</u> method for archiving images (whether images of photos, videos, or documents) that removes all file format dependencies
- The new method for archiving images and sound has quickly become one of the most compelling aspects of DOTS for all potential customers, since, with it, DOTS can guarantee image and sound files can be read securely decades into the future, without concern for operating system compatibility
- Three more patents have been granted, and twelve additional patents are ready to be filed

Long-Term Digital Archive Options

CLOUD* / MAGNETIC MEDIA VS. DOTS

Archiving in the Cloud or Magnetic Media	Archiving with DOTS
 Upload or record to magnetic media 	Record to DOTS media
 Your data is stored in a climate-controlled facility 	Store on a shelf at ANY temperature from 15° to 150° F
 Monitor integrity of Cloud or local storage, if tape, check regularly for degradation & re-pack 	DONE - No re-record required
 Migrate the data before magnetic data loss 	
 Risk of data loss / corruption due to media degradation, migration, hardware obsolescence, EMP, solar flares, etc. 	
• REPEAT EVERY 3 – 5 YEARS	

Exponential Growth of Migration Compounds the Problem

GROUP 4 7

Discussions tend to focus on one migration of data created in a given year, yet ignore the subsequent years of data created that will also require migration. Soon, you're faced with migrating multiple years of data in one year.

In a three-year migration cycle, you have the first year of data to migrate after three years. After 6 years it will be time for the second migration of year 1 *and* the first migration for year 4, and so on.

10 Petabytes of LTO-7 takes over a year to migrate with one drive. Within a few years, it will take several years to migrate a single year's migration requirement.

This illustration assumes NO increase in new current-year data, which is unlikely.

Even with no increase in current data, there will quickly be insufficient time in the year to complete the migration of existing and new archive data.

The expected exponential increase in new archival data will further compound the challenge of migration.

<u>Contact</u>

info@group47.com